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Abstract 
This essay offers a new approach for conceptualizing the environmental impact of 
chemicals production, consumption, disposal, and regulation. Environmental protection 
regimes tend to be highly segmented according to place, media, substance, and effect. 
Existing scholarship often reflects this same segmentation, by focusing on a locality, 
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specific chemical, social movement, or regulatory body. In turn, as new environmental 
measures are introduced to deal with pollution and toxicity, they tend to focus on 
controlling future effects rather than dealing with the accumulated contamination from 
past industrial activity and waste. In chemical substances we encounter phenomena that 
are at the same time voluminous and miniscule, regulated yet unruly. Inspired by recent 
work on materiality and infrastructures, we focus on the concept of residues as both 
material and political entities. Following residues, we argue, helps us see how the past 
has been built into our chemical environments and regulatory systems, and why 
contaminants seem to always evade control. 
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I.   
Environmental health, politics, and regulation have become important topics to STS scholars, in 
part because of the urgency, complexity, and scale of contemporary environmental problems. 
Research has nucleated around several key topic areas: the science and medicine of exposure and 
chemical safety; the role of technical experts in government decision making; actions by industry 
to forestall regulation by magnifying scientific uncertainty; and the mobilization of 
environmental justice movements that understand risk to be stratified by race and class, to name 
a few (e.g., Boudia & Jas 2014; Brown 2007; Cranor 1993; Jasanoff 1990; Krimsky 2000; Langston 
2010; Markowitz & Rosner 2002; Pellow 2007; Proctor 1995; Sellers 1997; Shostak 2013). For each of 
these issues, the relevant environmental problems implicate chemical manufacturing and 
pollution. Since the publication of Controlling Chemicals by Ronald Brickman, Sheila Jasanoff, and 
Thomas Ilgen (1985), scholars who have squarely addressed the industry and its manifold 
environmental consequences have generally focused on a polluted locality (a mining or fenceline 
community, or a building), a type of toxin (lead, PCBs, or Bisphenol-A), a type of victim 
(consumer, worker, resident, ecosystem), or a regulatory regime (e.g., Allen 2003; Boullier 2016; 
Fortun 2001; Henry 2007; Murphy 2006; Ross and Amter 2010; Vogel 2013).8 This literature has 
been exceedingly valuable in illustrating the scope and recalcitrance of environmental problems 
related to the chemical industry, but reflects the same kind of segmentation that bedevils 
environmental regulatory systems. Recent developments in STS, such as the scholarly attention to 
materiality and infrastructures, suggest promising avenues for reconsidering the production and 
control of chemicals (Bennet 2010; Bowker & Starr 1999; Law 2010; Slota & Bowker 2017). We are 
exploring how these approaches might be exploited to theorize from chemical domains rather than 
applying theory to chemical cases. 
																																																								
8 There is also scholarship on chemicals regulation in various national contexts, which we will not attempt to 
cite here, including work by sociologists, political scientists, legal scholars, and environmental and labor 
historians. For examples of work on transnational regulation of chemicals, see note 10. 
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In this Considering Concepts essay, we invite collective rethinking about chemical 
environments, focusing on the notion of a residue.9 Residues need not be bound to a place, a 
substance, an effect, or a regulation, but instead afford us a multivalent conceptual tool for 
dealing with the dynamic complexities of chemical environments, both concrete and abstract. 
Moreover, by offering a reimagined vocabulary and program for research, we hope to nudge 
academic and public discussion of chemical production as it relates to regulation and 
environmental health beyond the cul-de-sacs of exasperation, complacency, and despair.  
 
 
II.  
Residue is an old idea. It derives from the Latin, residuum, meaning “something remaining.” The 
meaning has not changed much over the centuries. A contemporary definition describes residue 
as “a small amount of something that remains after the main part has gone or been taken or 
used” (Oxford Dictionaries online). In law, this something refers to what remains of an estate 
after taxes, debts, and bequests are paid. And in chemistry, residue refers to “that which remains 
after a process of combustion, evaporation, digestion, etc.; a deposit or sediment; a waste or 
residual product” (Oxford English Dictionary online). Consonant with aspects of all of these 
definitions, the residues we wish to describe are at once by-products of extractive and industrial 
technology, history, and organization and also catalysts escaped from the lab or the landfill or the 
mine and urging into existence new biological, chemical, geological and sociotechnical worlds. 
We think residue is a concept that can capture the multi-faceted nature of chemicals. 

For STS scholars, the idea of residue holds two distinct and novel attractions. One 
attraction is the promise of new method. Like biological tracers, we can use residues to chart the 
chemical dispersions and transformations set into motion by industrialization, often disclosing 
unanticipated environmental and social costs of living on what is now a “synthetic planet” 
(Casper 2003; Creager 2013). Residues are transgressive. They disobey boundaries, appear where 
they shouldn’t appear, alter environments, and enter communities and bodies without 
permission.10 Following them around, rooting them out, holding them up to the light, allows a 
different world to come into view, a world we cannot see so clearly if we begin our exploration 
with the economics of chemical production or the legal studies of chemical regulation or the 
chemical politics of sick communities. The other attraction that residues hold for us is theoretical. 
In transposing a key category from its everyday and scientific usage, we are engaging in what 
Henry Cowles has called “endogenous analytics,” peering closely at our chemical subjects for 
clues as to how to understand them anew (Cowles 2014: 15; Cowles 2016).  

																																																								
9 Recently (while we were preparing this piece), Gabrielle Hecht (2018) published an essay using the same 
concept, as seen through governance of contaminants from mining. Our approaches are consonant but not 
identical. 
10 The “transboundary” nature of chemical pollution made it an issue of international negotiation and 
regulation by the 1970s: Eckley (2000); Eriksson, Gilek, & Ruden (2010); Long (2000); Pallemarts (2003); 
Rothschild (2014); Rothschild (forthcoming); Selin (2010). 
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We find five properties of residue especially interesting and use diverse empirical 
examples to tease apart the theoretical significance of each one. These five properties can be 
distinguished analytically but they are also closely related. Politics runs through all of these 
aspects of residues, a consistent point of their interconnection. This is our lone caveat and starting 
premise. 

First, the term “residue” is marked from the outset by a kind of irreversibility. 
“Something remaining” implies past action. Residues are the results or outcome of some already 
concluded process. They are leftovers. Remnants. In this sense, residues cannot escape their 
history and provide clues for reconstructing the chemical past. This is equally true of chemical 
products which are not human-made and those that are synthetic. Humans come into contact 
with lead, a natural but highly toxic metal, because it has been extracted for industrial purposes 
and permanently redistributed across the environment.11 PCBs, by contrast, did not exist before 
chemists synthesized them. During the middle decades of the twentieth century, as the electrical 
infrastructure for the growing industrial economies was built, PCBs entered landscapes, 
workplaces, and households, in air conditioners, fluorescent light fixtures, refrigerators, 
television sets, and electrical transformers. Their insolubility in water and resistance to corrosion 
led PCBs to be used in carbonless copy paper, paints, sealants, ironing board covers, and plastic 
bottles. Because of their very slow degradation (physically or biologically), PCBs will linger in the 
environment indefinitely, though they were banned decades ago, and their fat solubility means 
that these toxic residues continue to bio-accumulate in food webs (Spears 2014: 1–4; US Senate, 
Committee on Environment and Public Works, Subcommittee on Superfund and Environmental 
Oversight 1988: ch. 2). Michel Serres observes that “pollution comes from measurable residues of 
the work and transformations related to energy, but fundamentally it emanates from our will to 
appropriate, our desire to conquer and expand the space of our properties” (Serres 2011: 42). 
Serres’ work reminds us that the irreversibility of residues emanates not only from the molecular 
nature of the chemical substances, but also from the politics of production and regulation––of 
decisions to create toxicants as well as decisions to not clean up the leftovers (Reinhardt 2010). As 
irreversible objects, these residues––both material and political––can’t simply be undone, 
undermining the idea that there is a “pre-” era to which we can return, even if politically and 
economically powerful actors want it so (Shotwell 2016; Tsing 2015). As Jens Beckert has argued, 
capitalism tends to restrict attention to future possibilities (Beckert 2016). Residues remind us that 
the past cannot be ignored.  

Second, residues are material objects, though often neglected or treated as immaterial. 
Because residues can be thin, faint, negligible, and difficult to see, they are also easy to ignore, 
which can be politically useful. Residues’ there-but-not-there quality belies not only a material 
existence but, often, their actual volume. For example, in mining the residues generated from 
extraction and refinement often far exceed the final product. In this way, even as mountains of 
sometimes-toxic “tailings” remain invisible to ultimate consumers, they tend to pile up among 
																																																								
11 Geochemist Clair Patterson presented compelling evidence in 1965 that lead exposure was directly related 
to industrialization and warned of the public health hazards of viewing it as a natural part of the 
environment. See Warren (2000); Markowitz & Rosner (2013).  
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socio-economically disadvantaged populations and already degraded ecosystems (McNeill & 
Vrtis 2017). And even when the physical volumes of residues are miniscule they have 
substantive, empirical presence and political consequence. For example, toxicity dose-response 
curves are not always linear; sometimes a little bit of a toxin can cause disproportionate harm 
(Khetan 2014). So can cumulative effects. We interact with residues all the time and chronic 
exposure to a little poison every day can add up to a lot of poison over the course of a human 
lifetime or––when we are dealing with heritable mutations––generations (Chen and McKone 
2001). The geographic dispersion of residues can also make an important difference because a 
little bit everywhere adds up to a lot. At the height of the Roman Empire, coinage forged from 
Iberian smelters produced enough fugitive lead to coat the globe, raising the planet’s atmospheric 
lead to levels that are still measurable today (Tainter 2000). In each of these examples, our 
mistake, and sometimes our political folly, lies in believing that a little bit of something is the 
same as none at all.   

Third, residues are slippery. They have a way of escaping modern production and 
regulatory systems and are often hiding in plain sight. Our standard surveillance systems miss 
residues when we don’t look in the right place or we don’t look for the right thing. Sometimes, 
we simply don’t look at all. We know about pesticides on crops, but we miss the pesticides that 
drift over farm workers and their families (Bohme 2014; Daniel 2005; Harrison 2011). We know 
how to react to the dramatic oil spills that grab headlines and despoil coastlines, but we are 
stymied by the slow drip, drip, drip of crescive oil disasters-in-the-making (Beamish 2002). And 
even when we know what to look for and where to find it, some residues still slip away. Silver 
nanoparticles used in common consumer products like shampoos and conditioners wash down 
the shower drain, ending up in water treatment facilities that tend to do a good job of pulling 
nanomaterials out of waste water. But then the silver particles are incorporated into the solid 
waste stream, much of which is recycled as organic nutrients onto agricultural fields. From there, 
rain and wind wash nano-silver off the fields and back into streams, despite our best efforts to 
curtail its travels (Dale, Casman, Lowry, Lead, Viparelli, & Baalousha 2015). Nanoparticles are 
not unique in their slick mobility. Exhibit B is surely micro-plastics, now known to lurk in fresh 
seafood and quite possibly in our kitchen salts, honey jars, and beer (EFSA Panel on 
Contaminants in the Food Chain 2016).12 As a growing list of so-called “emerging” contaminants 
attests, the politics of residues are slippery too. From organochlorines to phenols to 
neonicotinoids to per- and polyfluoroalkyl substances, knowledge of these chemicals’ 
whereabouts and effects seems always to arrive too late for preventive policy.  

Fourth, residues are unruly, behaving and transforming unpredictably. Once at large, 
they interact with each other and the environment in complicated ways. Sometimes, of course, 
these interactions helpfully eradicate residues. Many synthetic materials break down and are 
completely taken up into the ecosystems, contributing to the biomass and nutrient cycles that 

																																																								
12 Beyond fish, data on microplastic occurrence in food are limited. Confirmation of early studies reporting 
positive results are hampered by the lack of regulatory limits and standardized methodologies. On 
microplastics in salt, see Karami, Golieskardi, Choo, Larat, Galloway, & Salamatinia (2017); on honey, see 
Liebezeit, G. and E. Liebezeit (2013); on beer, see Liebezeit, G. and E. Liebezeit (2014).  
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perpetuate diverse life forms. But not all residues rejoin the environment as ecologically 
innocuous participants, and their persistence provides a kind of chemical record of 
industrialization, innovation, and consumer choice. Some residues that are not harmful outside 
human bodies are metabolized into toxic substances once inside them. Moreover, residues team 
up. Chemical emissions interact with each other and with substances that are in the soil and air, 
producing pollutants we had not planned—or planned for.13 To take familiar examples, ozone and 
acid rain are both formed by chemical reactions of different kinds of industrial pollutants with 
the environment (sunlight in the first case and water in the second). Residual antibiotics from 
agriculture and aquaculture that enter the environment as waste contribute to the prevalent 
problem of resistance; it turns out that heavy metals, frequently a co-contaminant of antibiotics, 
further select for antibiotic resistance (Seller & Berendonk 2012). These interactions pose 
problems for environmental protection laws, which regulate exposures substance-by-substance, 
task-by-task, and medium-by-medium. This kind of hyper-segmentation in the law does not 
correspond to a three-dimensional world of mixtures and mobility, in which industrial chemicals 
and organisms interact in air, soil, and water to generate unexpected entities, environments, and 
risks.  

Fifth, residue is primarily valued for the work it creates, less so for the work it 
accomplishes. It has an odd sort of negative identity: matter that is not supposed to matter. To 
call something a residue means that its useful life is effectively over; that is has aged, moved on, 
or is otherwise to be disregarded. Residue can become costly in its cleanup, however. When they 
are labeled as waste, residues require further work or energy to clean up, dissolve, remove. It is 
the unwantedness of residue, and the negative attention it inspires, that can make it incredibly 
expensive. To take a “crude” example, the oil lost to British Petroleum, LLC, when it gushed 
uncontrolled from the Deepwater Horizon oil platform in the Gulf of Mexico in 2010, was then 
valued at about $250 million (Crooks 2016).14 The cost to responsible parties and US taxpayers for 
stopping the leak and cleaning up the spilled oil is estimated to be $14 billion.15 But when residues 
are not identified as waste, they can lurk in invisibility. They are there, but not there, like the 
island-sized patches of plastic debris littering the oceans.16 In this way, the bureaucratic act of 
labeling chemicals––as wanted/unwanted, important/unimportant––attaches residues to 
geopolitics. Labeling practices vary from country to country so that what is a residue in one 
country or at one time is a useful chemical product in another, creating discontinuities in 
international policy. For example, asbestos is now considered a residue in the few countries that 
have banned it while it continues to be used as a building material in many other countries. 
Plastic bags are increasingly seen as objects to be banned from cities when they were still 
considered useful (if not indispensable) just a few years ago. In this way, bureaucratizing 

																																																								
13 These are called secondary pollutants. 
14 Calculated for inflation at August 2016 dollars. 
https://inflationdata.com/Inflation/Inflation_Rate/Historical_Oil_Prices_Table.asp  
15 This figure does not include costs of civil penalties, environmental damages, criminal fines, and 
compensation to businesses and individuals. Crooks (2016). 
16 Scientists have identified five such massive patches in the world’s oceans (Mosbergen 2017). 
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chemicals can amount to an uneven vanishing act, serving as blinders on which environmental 
left-overs we notice, and which we fail to perceive; which we pay to clean up and which we leave 
alone.  
 
 
III.  
The five social properties of residues are interesting in themselves, but only provide the starting 
point for our collaborative effort. They help us reimagine how chemical matter matters and they 
bring into better focus an emerging residues-oriented research program organized around three 
universal processes, namely legacy, accretion, and apprehension. We have found these three 
processes to be helpful in integrating empirical cases from our different STS fields of history, 
sociology, and political science.17 While these three themes gather our insights in productive ways, 
they do not exhaust the possibilities of the analytic category of residue. Rather, we sketch out our 
particular research agenda to invite other STS scholars to consider how residues might inhabit, or 
even illumine, their own scholarly engagement with the environment. 

To begin, residues exhibit the path-dependence and persistence of chemical 
contaminants, as matter out of time. More so than kindred concepts like temporality or history, 
legacy gives emphasis to the residual. Residues are what remain behind and remind us that with 
chemicals and other residues of the industrial age, the past is always present. The prior activities 
of human societies, whether two thousand years ago or two days ago, generate chemical residues 
that end up somewhere else, whether in water, air, on land, or in bodies. As the extensive 
contamination of the oceans with microplastic debris illustrates, we are swimming in the waste of 
the petrochemical era even as the production stream of disposables continues. The legacies of 
consumer chemicals involve not only material remains but also regulatory systems, which 
usually change by addition or modification, dragging administrative organizations and legal 
precedents interminably forward. Itself a by-product of jurisdictional limits and court challenges, 
regulation is an integral part of the production system from which residues have issued.  

Additionally, to take a cue from Mary Douglas, residues represent matter out of place 
(Douglas 1966). Residues travel but also assemble, through processes of accretion. Consider how 
displaced residues from industrial activities accumulate, over time, as property owners and land 
uses change, and the role of regulatory rules in facilitating the dual accumulation of capital and 
hazardous waste (Frickel and Elliott 2018). Or the conundrums in dealing with electronic waste, 
for which recycling is a limited way to deal with the environmental and health impacts of 
decades of rare earth extraction, production, and disposal. Accretion shows us how, literally and 
figuratively, residue covers ground.  

Residue can also be matter out of reason. We will signal this aspect as apprehension, 
playing on its double meaning: understanding and worries (Shapiro, Zakariya, & Roberts 2017). 
Apprehension refers to human capacities to perceive and make sense of residues as part of our 

																																																								
17 We are currently at work on a book manuscript which more fully develops these themes with a variety of 
examples from our individual and collective research. 
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physical environment. What we know, and what we don’t know, and the ways in which systems 
of regulatory knowledge-making also produce ignorance, are highlighted as we consider 
apprehension (Frickel & Edwards 2014). It also refers to the emotional and moral character of 
residues as invoking danger. The material reality of residue challenges our systems of reason-
making, especially those involving markets, science, and politics.  

 
 
IV. 
All told, we find the idea of residue exciting because it helps us reframe and reconceptualize 
chemical environments in STS. One final example is how it refracts the Anthropocene, a topic that 
has taken environmental studies by storm (Crutzen & Stoermer 2000; Crutzen 2002).18 In one sense 
(a material sense), residues are the Anthropocene––incontrovertible evidence of human activity 
that has become sedimented into the planet’s terrestrial record. Residues are the chemical and 
elemental signals that physical geologists are using to identify a new epoch, mark its origins in 
time and space, and trace out the stratigraphic consequences of human history for Earth history. 
In another, more discursive sense, residues subvert a popular narrative about the environmental 
costs of industrialization, which has been tethered to the combustion of carbon and atmospheric 
climate change. Burning carbon creates residue, of course. But this framing misses the other side 
of the carbon coin:  Oil and gas are the feedstocks for chemical industry, which synthesizes a 
massive variety of compounds used in every sector of the economy. Residues helps us see the 
Anthropocene as combustion and synthesis of carbon-containing compounds, as well as the 
industrial manipulations of dozens of other chemical elements. These material transformations 
are rearranging not only atmospheric and ocean chemistry, but biology as well, altering the 
course of evolution, including human evolution (Frickel 2004).  

As this rendering of the Anthropocene illustrates, residue offers a way to reckon with 
environmental change and regulation in terms of its materiality and irreversibility. It enables us 
to draw on environmental science while recognizing its limitations, as well as to employ our 
critical perspective as social scientists. In tracking residues, we necessarily confront the 
present/past nature of chemical contaminants, the unavoidable issues of scale, and the 
conundrum of voluminous yet inadequate data. We see residues, presented here as a set of 
material-social properties enmeshed with processes of legacy, accretion and apprehension, as 
building capacity within STS to catalyze theory generated from chemical domains and so 
reimagine and remake our environments.  

 
 

																																																								
18 As proposed by Crutzen and Stoermer (2000), the Anthropocene refers to a period of human-induced 
changes to Earth’s biogeochemical systems. It is meant to replace the Holocene as the current geological era. 
Crutzen and Stoermer suggested that the late 18th century provided a useful starting date consonant with 
James Watt’s improvement of the steam engine in 1784. Among geologists, debate continues about when the 
Anthropocene began. Some argue for 10,000 years ago with the rise of large-scale agriculture; others argue 
for 1950, with the commencement of nuclear testing.  
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