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Abstract  
We apply the concept of invisible labor, as developed by labor scholars over the last forty years, 
to data-intensive science. Drawing on a fifteen-year corpus of research into multiple domains of 
data-intensive science, we use a series of ethnographic vignettes to offer a snapshot of the 
varieties and valences of labor in data-intensive science. We conceptualize data-intensive science 
as an evolving field and set of practices and highlight parallels between the labor literature and 
Science and Technology Studies. Further, we note where data-intensive science intersects and 
overlaps with broader trends in the 21st century economy. In closing, we argue for further 
research that takes scientific work and labor as its starting point.  
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Introduction 
For Vannevar Bush, 1945 was an annus mirabilis. His wartime efforts at the Office of Scientific 
Research and Development (OSRD) to reorganize American science along lines established by 
industrial engineering had borne fruit in the form of scientific advancements and overflowing 
archives. In chemistry and physics, Bush found a model of scientific practice radically changed 
from the prewar era; research conducted by teams of cooperating scientists, intensive publishing 
schedules, and wide dissemination of research findings became the new normal. This new model 
of science, Bush argued, could and should be expanded to the whole of science. Cementing these 
changes would be a wholesale change in the organization and funding of American science (see 
Mirowski 2011), and much of the OSRD model would find its way into the postwar National 
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Science Foundation (NSF) along lines laid out by Bush in Science: The Endless Frontier (Bush 
1945a). One direction of Bush’s vision called for inculcating a new set of sentiments within 
scientific apprentices. In contrast to their prewar counterparts, scientists trained in the postwar 
era needed to be comfortable with cooperatively communicating and disseminating research, 
working at the faster wartime pace normalized in physics and chemistry, and bridging the gaps 
occasioned by increasing disciplinary specialization. Another direction called for the flood of 
information produced by this new model of science to be tamed through technology and 
automation, such as Bush’s own Memex (Bush 1945b).  

Two decades after Bush’s annus mirabilis, his speculation that the onerous work of 
science could be automated through technological advance ran headlong into a series of 
inconvenient facts. In a 1961 provocation on the monumental scale of Big Science and its financial 
demands, Alvin M. Weinberg observed in the journal Science, “if [a scientist] becomes involved 
with Big Science [the scientist] will have to become a publicist, if not a journalist, an 
administrator, as well as a spender of big money” (Weinberg 1961, 161). Weinberg lamented the 
new distribution of scientific practiced assumed by Bush’s vision, deliberated in the popular 
press and congressional hearings rather than in lecture halls, and the celebration of spectacular 
and dramatic research at the expense of the perceptive and mundane. A few years later, in a 
speech to the 1968 American Psychological Association titled “As We May Think, Information 
Systems Do Not,” William Paisley observed that despite the computational power, technology, 
and data available in 1968, the archives had failed to automate: “the missing element in 
information service is people. Mediators. Middlemen… our dreams for mechanizing the archives 
and making them truly responsive to researches and other users are dreams for the next century” 
(Paisley 1968, 13). 

Science, as Weinberg and Paisley remind us, is a conversation between and betwixt 
collaborators and interlocutors (be they human, animal, mineral, mechanical, or digital), not a 
monologue given by a scientist to an army of functionaries. Fifty years on, their observations are 
no less true. We write in the midst of a transition from an era of industrial organization and Big 
Science to an era of data-driven science and Big Data. Like all technological transitions, there is 
both change and continuity in this transition. While theorizing the changes and continuities 
between Big Science and data-intensive science is beyond the scope of this article, we make 
common cause with Weinberg and Paisley by offering a critique and correction to the optimistic 
assumptions that have accompanied data-intensive science. Our parenthetical expression 
(in)visible labor draws attention to the stakes of our inquiry. While invisible labor has long been a 
part of post-war science, and a concern for critical voices, data-intensive science has been 
accompanied by distinctive forms of labor and inquiry. Behind data-intensive science’s 
technological facade lies a bewildering array of human labor, some performed in the spotlight by 
star scientists, but most performed behind the scenes by the precariously employed in 
conjunction with computational machines.  

In what follows we draw on an archive comprising fifteen years of continuous and 
comparative research across multiple domains of data-intensive science to present a bottom-up 
snapshot of the (in)visible labor engendered by data-intensive science. Initially, we use the 
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emerging literature on data-intensive science and classic works in science studies to delineate a 
stock of activities necessary and common to scientific practice: authoring, administering, 
maintaining, archiving, and collaborating. We use labor literature and ethnographic vignettes 
drawn from our data corpus to illustrate how data-intensive science has animated new forms of 
scientific labor, many foreshadowed by emerging forms of work in industry. Our analysis also 
highlights moments of continuity and disruption between invisible labor before and after the 
advent of data-intensive science. Borrowing a chemical and grammatical term, valence, we show 
how data-intensive science combines and binds the common activities of Big Science to new 
forms of work and labor, in both familiar and surprising ways.  
 
 
What Makes a Science Data-Intensive? 
By data-intensive science we mean scientific fields in which the quantity and velocity of data 
generation have led to (i) a reliance on computational power and techniques to analyze, curate, 
and archive data (Kitchin 2014a, 2014b, 5–7; Burns, Vogelstein, and Szalay 2014; Critchlow and 
Dam 2013; Ekbia et al. 2015); and (ii) intensifying transdisciplinary collaboration (Ribes and 
Bowker 2008; Bell, Hey, and Szalay 2009). Data-intensive science is heterogeneous in composition 
and complex in operation. The distinguishing characteristic of data-intensive science is the 
intensive production, consumption, and circulation of data and data products. Digital data is the 
sine non qua of data-intensive science, and analog data must be converted (often laboriously) to 
digital form for manipulation, analysis, circulation, and storage. As a result, the cardinal methods 
of analysis in data-intensive science are practiced on a screen using common digital tools such as 
spreadsheets, databases, and code editors. Adding to this complicated environment is the capital-
intensive nature of data-intensive science, typically administered through large grant-funded 
projects with budgets in the tens or hundreds of millions that require an extra layer of 
administration, public outreach, and data management. Because of the large budgets and long 
life of the resultant infrastructure, data-intensive science requires intensive interdisciplinary 
collaborations that must be maintained through time and across space. 

As Bush played a key role in the transformation of science in the postwar period from his 
perch at the OSRD, another engineer, Jim Gray, played a key role in ushering in the era of data-
intensive science from his position at Microsoft Corporation. As Bush looked to physics and 
chemistry as models for scientific practice, Gray looked to astronomy as a model for data-
intensive science. In a lecture summarizing his long-term collaboration with astronomers (Hey, 
Tansley, and Tolle 2009), Gray articulated his vision for a 4th scientific paradigm based on the 
intensive generation, analysis, and archiving of scientific information––from lab books to grey 
literature to data sets––stored in databases and connected through the internet. Once enough 
data is accumulated, per Gray, the main analytic focus will naturally shift from the analysis of 
bespoke data sets to the reanalysis of extant data sets generated automatically and made publicly 
available. While Gray’s vision has not been universally adopted (the humanities and field 
sciences are notable holdouts while large parts of astronomy have adopted Gray’s vision), in 
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disciplines where data-intensive science has become the normative mode, new forms of labor, 
notably analyzing and archiving large data sets, have emerged in its wake.  

Yet, despite Gray’s rhetoric of a 4th scientific paradigm on the horizon, data-intensive 
science has not caused a qualitative break with past scientific practice. Data-intensive science is, 
perhaps, best understood as an amalgamation of traditional scientific practice overlaid with 
elements of computer-supported work as practiced in industry and archiving practices derived 
from the development of relational databases (Gray 1996).  
 
 
Research Design 
The analysis presented here is based on interviews and ethnographic observations conducted by 
successive cohorts of researchers at the UCLA Center for Knowledge Infrastructures (henceforth 
CKI), including the authors of this paper, over a fifteen-year period beginning in 2004. The 
authors have contributed research and analysis to the CKI’s ongoing research program since 
2014. Studies were conducted in a diverse array of scientific fields, specializations, and sectors 
across the physical, life, and social sciences (Mayernik, Wallis, and Borgman 2013; Wallis, 
Rolando, and Borgman 2013; Darch et al. 2015; Borgman et al. 2015; Pasquetto, Randles, and 
Borgman 2017; Pasquetto, Borgman, and Wofford 2019; Souleles and Scroggins 2017; Scroggins 
2017, 2019). Research participants include PIs, postdoctoral researchers, doctoral students, 
graduate students, technicians, librarians, and staff. 

Ethnographic research incorporated in this article includes field observations of 
participants performing research, laboratory and community meetings, and other events. 
Interviews were audio recorded, transcribed, and complemented by the interviewers’ memos on 
noteworthy topics and themes. In sum, the CKI’s corpus consists of 483 coded interview 
transcripts, an equal number of ethnographic observations, and thousands of pages of 
documents, listserv archives, and other grey literature.  

Though sharing a common orientation towards the intensive use of data, data-intensive 
science is not a monolith. Differences in tools and work practices, disciplinary concerns, 
epistemological and ontological assumptions, the scale and centrality of data generation, and the 
state of standards and measurements within a given discipline all play their part in the kinds and 
amounts of labor required.  For example, astronomy, with standardized file formats and common 
instruments (telescopes) with consistent metrology, requires different forms and amounts of 
labor than ecology, which lacks standardized file formats, common instruments, and consistent 
metrology. Though both astronomy and ecology use data intensively, they produce, consume, 
and circulate data in differing manners. To account for this variation, in our reanalysis of the CKI 
corpus we created an extensive list of activities, some discipline-independent and others 
discipline-specific, related to work and labor.  

From our list of activities, we then developed a set of indexes and codes in ATLAS.ti. 
Next, using our codes, we drew a selection of ethnographic vignettes highlighting the contours 
and boundaries of these ongoing activities. By making activities, rather than job classifications or 
place in the academic hierarchy, central to our analysis we demonstrate how the everyday work 
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of science cuts across received classifications and hierarchies. These activities form the bones of 
our analysis, with ethnographic vignettes providing the flesh. Confidentiality permitting, where 
possible we have allowed our research participants to speak in their own voices.  
 
 
Opening the Black Box of (In)visible Labor in Data-Intensive Science 
Invisible labor was canonically defined by Daniels (1987) as work “that disappears from our 
observations and reckonings.” The reckonings from which invisible work disappears are 
classificatory schemes and metrics, such as job descriptions and economic indicators, that make 
work and labor visible and rewardable to and within institutions (Star and Strauss 1999; Bowker 
and Star 1999). Daniels’ remarks summarize a body of work inaugurated by feminist scholars in 
the 1970s, when feminist scholars began to look critically at the relationship between labor 
performed inside the household and labor performed outside the household. A number of 
researchers and theorists found labor outside the house, i.e. labor reflected in rewards structures 
and economic indicators, was reliant on an equal, and often greater, amount of invisible, 
unrewarded, and gendered labor performed within households (Fee 1976; Himmelweit and 
Mohun 1977; Coulson, Maga, and Wainwright 1975). An important point for thinking through 
scientific practice is Cowan's (1976) demonstration that the forms invisible labor assumes cannot 
be separated from the wider political economy in which it is embedded.  

In the years since Daniels’ 1987 comments, the visibility/invisibility dichotomy has 
acquired more nuances as scholars have (i) stressed that visibility is a multivalent and 
multifaceted spectrum, one with fractal folds and complexities and (ii) sought increasingly fine-
grained and nuanced concepts to account for the complexities of labor in the 21st century. By the 
1980s, as the economy shifted from its industrial base towards the service sector, scholars such as 
Hochschild (2012) conceptualized emotional labor as a new type of invisible labor: the 
transformation of domestic work into a commodity necessary to the functioning of the service 
economy. Following on Hochschild’s pioneering work, the concept of care has emerged as a 
critical standpoint from which to examine labor in all its manifested forms (Star 1990; Mol 2008; 
Tronto 1993), but particularly the labor of maintaining human relationships. Tronto defined care 
as “all we do to continue, maintain, and repair ‘our world’ so that we can live in it as well as 
possible” (1993). While care has been widely taken up as an ethical stance in terms of human 
relationships, Jackson (2017) emphasized that care also has material implications. In data-
intensive science, care is important as both an ethical stance towards both the repair and 
maintenance of scientific machinery and the human relationships that animate scientific inquiry.  

Within history of science, invisible labor has often been conceptualized as unseen, under-
rewarded, gendered, and classed labor accompanying the work of the scientist. Shapin's (1989) 
description of the invisible labor in Boyle’s laboratory is the classic account, with recent accounts 
of the gendered and intersectional complexity of scientific work and theory (Roberts 2018; 
Harding 2016) carrying this work forward into contemporary scientific practice. While we do not 
directly address the work of funding data-intensive projects, the necessity of seeking grant-based 
funding within a marketplace of competing projects forms the political economy of 21st century 
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science (Lave, Mirowski, and Randalls 2010; Tyfield 2013; Edgerton 2017) and creates the context 
within which labor acquires (in)visibility. On one side of the ledger is labor that contributes to 
winning grants, and on the other side is labor that “disappears from our observations and 
reckonings” when grant applications, tenure cases, publications, and public relations are given 
pride of place.  

In the digital domain, the ethereal nature of digital work creates distinctive difficulties 
determining whose labor should be measured in official metrics, be they the mythical “man 
hours” in software development or scientific papers written and grants won, and whose labor is 
symbiotic to the metric. For example, Nardi and Engeström (1999) conceptualized digital work as 
a “web on the wind,” structured in practice yet lacking the permanence required for institutional 
recognition. Building on the earlier scholarship in Computer Supported Cooperative Work and 
Human Computer Interaction is a thread of research into the difficulties of collaboration in 
digital environments. Though technological tools can sometimes be used as the main medium of 
collaboration, more commonly, personal relationships and an ethic of care must carry the 
collaboration forward, particularly in the case of transdisciplinary collaborations (Ribes and 
Bowker 2008). Similarly, Leonelli (2010) and Plantin (2018) have argued that in data-intensive 
science, the work of cleaning data sets, such as assigning metadata, developing ontological 
schemes, and checking instrument readings, is typically devalued as “non scientific work,” yet 
both Leonelli’s (2010) research on biocurators’ work and Plantin’s (2018) on “data cleaners” in a 
social science archive demonstrate that the creation of ontologies and metadata and the cleaning 
and documenting of data sets, respectively, is essential for data-intensive science.  

While the canonical definition and foundational works on invisible labor emphasize the 
negative ramification of invisibility, two works (Orr 1996; Allen 2014) focusing on professional 
labor implicitly argue that not all invisible labor is negative. Work performed by nurses within a 
hospital is invisible in the canonical sense, but Allen (2014) suggested that the demands of 
professional practice in environments where sensitive information is archived, reused, and 
deliberated over can make a virtue of invisibility. Allen found that nurses, as part of their 
invisible yet essential professional practice, work across the boundary separating the formal 
elements of hospital care, such as scheduling medications, assigning beds, consulting with 
doctors, and filling out paperwork, from the informal aspects of hospital care, such as soothing 
patients and family and discussing cases and colleagues with fellow nurses. This work is 
essential to care but also to patient privacy. Likewise, in a study of Xerox copier repair 
technicians, Orr (1996) found the repair technicians’ talk about machines, customers, and 
salespeople, more so than technical ability, to be their primary form of labor. Talk was used by 
the technicians to train apprentices, understand how and why copiers break down, and manage 
customer’s and sales manager’s expectations. In both instances, the professional talk of nurses 
and repair technicians police and repair the boundary between customer and company and carve 
out a class of professionals whose job becomes translating across that boundary. In data-intensive 
science, the professional work of science qua science occurs in negotiations over authorship 
credit, discussing the future of controversial lines of research, and mentoring apprentices. In 
sensitive contexts, the invisibility of professional talk can become a form of care.  



Scroggins and Pasquetto  Engaging Science, Technology, and Society 6 (2020) 
 
	

	 117 

If invisible labor is that labor which “disappears from our observations and reckonings,” 
then visible labor is the unmarked category of labor made visible through classificatory schemes 
(Bowker and Star 1999; 2000). Writing for publication is the canonical visible work of the scientist. 
The work that technicians, administrators, and staff perform according to the standards 
negotiated in job classifications, descriptions, and annual reviews can be considered invisible. 
New standards bring new forms of visible work. For example, publishing data sets and research 
software has quietly become part of the visible work of science in some fields, as granting 
agencies have begun requiring data used in writing papers to be made publicly available 
(National Institutes of Health 2017).  

Within the labor literature, hypervisible labor (Crain, Poster, and Cherry 2016) has 
emerged as a category denoting labor in which the aesthetic enjoyment of observing work, as a 
skillful achievement or spectacular failure, is the main attraction. The work of celebrity chefs in 
open kitchens, actors on a stage or screen, and servers at theme restaurants are all examples of 
hypervisible work. Like all work, hypervisible work carries both positive and negative 
ramifications. University donors attending academic conferences or spending time “on the 
mountain” with astronomers or in the lab with scientists are paying to experience the 
hypervisible work qua work of science. Work featured in the popular press, the work of public 
intellectuals, work with strong and direct ties to areas of policy, and work of interest to major 
foundations and donors we also consider hypervisible. On the other hand, scientific scandals and 
controversial research may become hypervisible in a negative manner. The other side of credit for 
success is blame for failures. An example of negative hypervisible scientific work is the recent 
spate of “outings” over the difficulty of reproducing studies in social psychology and other fields 
(Dominus 2017; Marcus and Oransky 2018).  
 
 
The Varieties and Valences of (In)visible Labor in Data-Intensive Science 
In the following section we employ vignettes to explicate the valences of (in)visible labor in data-
intensive science in service to understanding the terrain of this quickly evolving scientific 
paradigm. We highlight the invisible, visible, and professional labor of data-intensive science in 
its complex permutations. Though our corpus contains several instances of hypervisible labor, in 
the interest of confidentiality we have excluded them from the following vignettes.   
 
 
Authoring 
By authoring we intend the work Foucault (2012) glossed as enunciating the truths of science. 
Unlike the singular authors of literary and artistic works, scientific authorship is plural. No one 
person, or machine, has full claim to the truths of nature but many have partial claim. Today, 
those partial truths are spread among instruments, papers, data sets, and software. In data-
intensive science, authoring is both writing papers and grants and authoring data sets and research 
software (Mayernik et al. 2015; Green 2009; Hills et al. 2015). Authorship is also a dividing line 
separating those whose name appears on the byline of scientific papers, and hence registered as a 
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citation, from those merely acknowledged. Adding to the complexity, in disciplines such as 
astronomy, it is customary to place the instrument that took the observations on the byline. A 
contested form of authoring specific to data-intensive science is creating datasets and research 
software. Data sets are often authored by graduate students, postdoctoral researchers, or 
technicians. Despite being central to data-intensive science and playing a key role in ensuring 
that data are able to circulate and remain interpretable, data and software authorships goes 
uncredited in publications and uncounted in tenure cases (Howison and Bullard 2016; Velden et 
al. 2014). Below we present three vignettes drawn from our data corpus that illustrate the 
valences of authorship in data-intensive science. 

When postdoctoral researchers from different disciplines are joint authors, professional labor is 
required to assign credit: Authorship norms vary between disciplines, and negotiating the 
authorship order between authors hailing from different disciplines, in this case physics and 
astronomy, requires balancing the sometimes competing claims of the work on the paper against 
disciplinary norms for distributing credit. This is professional labor proceeding, as Allen (2014) 
and Orr (1996) observed, through talk and negotiation. One participant described the delicate 
dance of arranging an article’s byline according to the field in which a postdoctoral researcher is 
applying for a job:  
 

It was a negotiation primarily between the particle physicist and the astronomers…we 
can't just ignore the fact that astronomy departments have different criteria than physics 
departments about when people are applying for faculty jobs. We have to accommodate 
that and since the particle physicists don't care who's first author, we say, “All right, let 
the astronomers be first author.” ... The way it works in particle physics you might say, 
“How do particle physicists ever get faculty jobs?” The answer is you rely on letters from 
the people in the collaboration who know what they did. So the procedures are just 
significantly different. It requires, it's a delicate thing, how do you balance the needs of the 
two different groups. 

 
Technicians’ labor is not always invisible; at the PI’s discretion technicians can be authors:  Data-

intensive science has not changed the scientific hierarchy; a technician’s inclusion on the byline is 
determined by the judgment of the PI, as a project’s PI owns the project’s data. The PI’s judgment 
is especially important when a potential co-author has moved on from the research team, lacks 
the academic credentials to justify authorship, or their contribution is unclear. Here a 
postdoctoral researcher explains the decision to include a laboratory technician on the byline of a 
recent paper: “He was actually their lab technician, so he did a majority of that particular work. 
And, of course, he’ll be included on the paper because he did... [the PI] is very good about, at 
least worst case scenario, making sure you get credit for what you did because they're not here to 
defend themselves." 

Formerly invisible authors of datasets can be made visible, with caveats: Cleaned and archived 
data sets are the lifeblood of data-intensive science. Yet, cleaning and archiving data sets is often 
uncredited and unrewarded work within scientific disciplines. One optimistic possibility is an 
emerging technique of data publishing and authorship used in some astronomical projects that 
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grants authorship credit to all those, no matter their role or status, who had a hand in producing 
a dataset. As one of our interviewees explains,  
 

Then you'll find at least one and sometimes two alphabetical tiers of authors which are 
indicating people whose work was not devoted to that particular science effort, but 
they've earned their authorship rights by virtue of helping enable the survey by doing 
kind of broader infrastructure work and made that work possible. And so they get what's 
called “architect status.” 

 
Data-intensive science has not changed the core difficulties inherent in scientific authorship. 
Deciding who among a plurality of authors (a problem that extends even to scientific 
instruments) deserves which share of the credit, and, therefore, visibility, is still an issue for 
debate and deliberation. Yet, one area where data-intensive science is slowly refashioning 
authorship norms is through the infrequent inclusion of software and dataset authors on the 
byline. 
 
  
Administering 
Administering, from the Latin administrare, means to “to help, assist, manage, control, guide.” 
Administering is not ordinarily visible to those outside the project, and many aspects of 
administration are invisible to non-administrators inside a given project. Though not specific to 
data-intensive science, the labor of administering is essential to its course and conduct, paving 
the way for future rounds of funding by ensuring that grant requirements are met, reports are 
written, and outreach efforts are undertaken. Often this means taking responsibility for so-called 
softer, nonscientific parts of a large grant––education and diversity requirements, for example––
and satisfying the demands of IRB boards, data privacy and security policies, and HR mandates. 
For staff, administering often requires developing interactional expertise, being able to talk 
authoritatively about a scientific domain (Collins and Evans 2007), while for faculty, PIs, and 
research assistants administering often means developing contributory expertise (Collins and 
Evans 2007) in administration, learning to contribute to the state-of-the-art project management. 
Below we present three vignettes illustrating the complexities of administering in data-intensive 
science.  

Administrative assistants labor invisibly, doing the housekeeping of data-intensive science: The 
labor of administering is often spread across multiple positions. Official organizational charts 
that simply divide academic from nonacademic staff are of little help in discerning who 
administers what and how. One administrative assistant described the experience:  
 

I am an administrative assistant. I work on, mainly, event coordination and event 
planning. I’m also responsible for development of the center’s website, and doing the 
cyberinfrastructure research to advise the Executive Committee, and then, sort of, 
everything else under the sun from administrative paperwork to event setup. We’re sort 
of a catch-all kind of job… when I applied to this job, there was nothing in the job 
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description about what sort of organizations this was or what they did… [I am] figuring 
out how to combine the administrative and the scientific databases with the public 
website, so establishing a website with data portals of various kinds to sort and to filter 
different entities based on their metadata. 

 
Administrators do the visible labor of meeting metrics required by funders: The broader impacts 

of scientific work, important for securing funding but difficult to institute in practice, are often 
the responsibility of administrative staff on large projects. Particularly in projects with 
educational and diversity goals, administrators are often at the leading edge of creating new 
pathways into scientific careers for underserved communities. One project coordinator explained 
how she organized a gender equity program:  

 
One of our big things that we're also looking at was gender equity, especially in computer 
sciences... Sort of trying to demystify some of the stereotypes that revolve around women 
and the sciences.... Our hope was that we could educate people and provide enough 
positive experience for the outcomes to be that people feel as if there are pathways for 
making that more equal. But at the same token also, we were also gauging perception of 
what people felt. What is [sic] the capabilities, I suppose, or stereotypes of women in the 
sciences. 

 
Administrators must be autodidacts, educating themselves in the professional labor of science: 

Also common is the autodidact administrator who, once in the position, must teach themselves 
enough domain science to be help, manage, assist, or guide a project. Another administrative 
assistant describes the struggle of coming up to speed with a fast moving scientific field:  

 
[The first day] was like, “Okay, you’re the Education and Diversity Director. Here’s what 
the grant said. Here’s what this document says. Go for it.”…[the PI] told me once that she 
considered professional development to be the ultimate sign of an employee being able to 
figure out what it was that they needed to do and go and do it. And when I came in, I had 
no background in science. So, I recognized that as the point of my greatest learning curve. 
And I began to attend the weekly lab meetings. Nobody made me go. Nobody suggested 
that I go. I just said, “I’ve got to go hear these students talk.” So, they would share and I 
would ask questions. And frequently, I would talk to the grad students or the postdocs 
and afterwards, I’d make lists. I come back to my office. I Google the words that I had 
down on paper. 

 
While data-intensive science has not significantly changed the form and content of administering 
labor, it has changed its tempo and scope. Data-intensive projects move at a faster speed and the 
collaborations they engender are wider and more transdisciplinary than scientific collaborations 
of the past. In response, administrative work has expanded into new areas and their work has 
acquired, at least in some contexts, increased visibility.  
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Maintaining 
While the innovative analytical tools of data-intensive science have garnered the limelight (and 
funding), it is routine maintenance that makes science possible (Russell and Vinsel 2018). Like all 
contemporary science, data-intensive science requires a dazzling array of technical skills, most of 
which require ongoing education, both formal and informal, to master. Expertise with 
computational analysis and data cleaning is a particular requirement of data-intensive science, 
but technicians who build instruments and maintain equipment (often analogue) are also 
required. Technicians range from graduate students, who know a little more Python than anyone 
else, to electrical and software engineers with decades of specialized domain knowledge. Their 
jobs range from building and maintaining expensive instruments designed for decades of use, 
such as telescopes, to calibrating environmental sensors, to maintaining software codebases, to 
repairing all of the above and then some. Not until key components break, fall out of calibration, 
or fail to be constructed on schedule, does maintenance work come to the forefront. Yet, like all 
scientific technicians, the technicians of data-intensive science, no matter the importance of their 
contribution, are often in precarious positions and paid with the least stable forms of funding. 

The invisible labor of technicians eases the PI’s managerial burdens: The need to maintain 
equipment is a constant companion of all science, not just data-intensive science. Many scientists 
we have interviewed, such as the one quoted below, have drawn a surprisingly old distinction 
(Shapin 1989; Morus 2016) between technical staff and scientists over their relationship to 
equipment. In this case, a PI positively describes the role technicians played at a former 
institution and laments the additional labor required of him at his current institution:  
 

[There] you have a person for everything. You have a person who does orders. You have a 
person that if you cannot order something via the net or whatever, that person actually 
drives around to buy stuff. You have computer people that help with everything 
computer. You have technicians like mechanical and electronic technicians that help with 
all kinds of equipment. Here, we don't have that. 

 
Students and postdoctoral researchers do the invisible work of maintaining analytic pipelines: A 

technician is also a bricoleur, skilled at combining the odds and ends of various systems and 
infrastructures into a workable whole. Here a PI describes how a data stream originating from a 
robot is rendered useful for analysis:  

 
So the problems are that it requires a fair amount personal intervention in the sense that I 
could draw a nice picture of this data flow but it's not anywhere near as automated as 
anyone might believe it is, if it involves typically... In this case it involved [a graduate 
student] doing a fair number of things manually… It's not automated, it's just enough to 
do experiments of this kind, but it doesn't really translate into a system or anything like 
that that we could just give to other people to do, right? So, and all the tools to massage 
the data once it comes off the robot are all sort of home brewed, right? And they tend to 
live because two or three students or postdocs sort of maintain them. But they aren't 
systematically maintained or archived or sort of curated in any way. 



Scroggins and Pasquetto  Engaging Science, Technology, and Society 6 (2020) 
 
	

	 122 

 
The metrology of large infrastructure is maintained through the invisible labor of skilled 

technicians: In astronomy and physics, the cost of physical infrastructure is measured in the 
hundreds of millions of dollars and is intended to serve thousands of scientists over several 
decades. To hold the measurement standards of such complex scientific instruments steady and 
thereby ensure the accuracy of the derived data, specially trained technicians must assist in the 
operation. A technician at an observatory explains the process:  

 
There are only two other telescopes built like this and we did this for a number of 
different reasons, primarily, to maintain what's called laminar flow between the optical 
elements primary and secondary mirror, to maintain image quality and temperature 
control…We have a crew that operates it, we collect the data, we give the data away, and 
you'll find that out that basically, we're a factory. We produce the data; we give it to 
people to use it… I do the mechanical, [another technician] does sort of the software side 
of things…then there's a series of technicians that work [in operations]. One electronic 
tech, one mechanical... and then a series of pluggers [technicians who press optical fibers 
into metal plates drilled with holes representing areas of interest in the night sky. This 
process makes astronomical observations usable in spectroscopic analysis.]. So we have 
like three pluggers, and what that means is these are the people who actually plug the 
plates during the day for observation purposes at night and that's pretty much the crew. 

 
Maintenance is fundamental to scientific inquiry. Data-intensive science has added a digital 
overlay to existing maintenance requirements; adding datasets, analytical pipelines, archives, and 
software to the list of scientific instruments to be maintained and calibrated. As well, the 
digitization of so much data has seen scientists and their apprentices take on ad hoc maintenance 
and repair tasks, primarily when increasingly complex analytical pipelines breakdown in the 
midst of analysis.  
 
 
Archiving 
Archiving is the work of cleaning, wrangling, curating, and preserving data for future reuse. 
Archiving the digital data and data products generated by scientific instruments, or made digital 
by technicians, is the specific form of labor that makes data-intensive science identifiable as data-
intensive. The technical and fiscal cost of generating data has fallen over the last few generations 
but the asymmetry Paisley identified when he observed that “information specialists” were 
needed to mediate between data banks and research groups has only grown (Moore et al. 2010; 
Mauthner, Parry, and Backett-Milburn 1998). Further adding to the complexity is the velocity at 
which data is generated, making the process of fixing data in place for archiving difficult. Despite 
these complexities, archiving is the lynchpin of data-intensive science. Without comprehensive 
archives full of papers and data sets with comprehensive and correct metadata, often a laborious 
and tedious process, the ease of analysis promised by digital workflows and pipelines disappears 
(Edwards et al. 2011).  
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The professional labor of science is often at odds with the professional labor of archivists: 
Archiving in data-intensive science means addressing the collision between file formats suited for 
cutting-edge research and file formats suited for archiving and preservation. Though astronomy 
is the rare discipline where one file format, FITS, predominates, localization of the file headers 
can cause problems for archivists, who need fixity to preserve data over the long term. An 
astronomical archivist working with a ground-based telescope explains:  
 

We didn't necessarily want to force [astronomers] into a standardization, because it tends 
to quell innovation and cleverness, and things like that… But then, we get different 
operational software or different detectors that collect the data in different ways, and, so 
all these [file] headers are slightly different from instrument to instrument and from era to 
era. That's one of our problems. 

 
Behind the dream of automated data generation is the invisible labor of cleaning and munging 

data sets: Another common difficulty is overcoming the fragility of automatically generated data. 
Automation can save labor but automation can also be a cause of additional labor. The following 
vignette describes the case of a malfunctioning environmental sensor that caused malformed data 
to be automatically generated, necessitating manual cleaning:  
 

When we collected the data in Bangladesh, we had this really ad hoc way of saving the 
data…it’s just what some guy came up with when he wrote the software. … [When the 
sensor malfunctioned] I had to spend hours and hours just cleaning the data because we 
had duplicate packets that were shown, data was printed out of order. And because of the 
software it was really hard to get it back in order. So if a node rebooted, any kind of node 
in the network rebooted, then the time stamps were screwed up, the sequence numbers 
were screwed up…I had to use anecdotal information, like okay, I know that I rebooted 
this node at this time…I did a lot of manual, like I think this time stamp should actually be 
this, so a lot of writing scripts to manually set time stamps, which never feels good. 
 
Authoring metadata is invisible work that renders scientific papers and datasets visible: If 

authoring is the visible work of science, authoring the metadata that make data discoverable and 
usable is its invisible accompaniment. Compared to excitement of a published article or winning 
a grant proposal, success in archiving is decidedly unglamorous and made difficult by the 
emphasis on publishing over preservation. As an astronomical archivist commented,  
 

You want some kind of connection that’s permanent, so when you see this link in 
whatever form it takes, it’s gonna be good 20 years from now.  It’s that technical 
challenge…But there’s also a social problem… People submit their papers and they don’t 
provide the links [to the underlying data].  Partly it’s culture, that’s how astronomy has 
always been done.  But there’s another reason which is a little more self-serving, which is 
astronomers do not want to give other astronomers a leg up when doing 
research…There’s also another difference, a big difference in the nature of data now and 
20 years ago.  Data used to be really expensive, and therefore people protected them.  
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Data are now cheap, people don’t need to protect them as much.   This is the age of the big 
sky surveys, which are supported by very fast high quality computers that are capable of 
managing and processing huge amounts of data. 

 
The archive is the starting and ending point for data-intensive science. Analysis starts 

with data found in an archive and data generation and collection end with data deposited in an 
archive. The centrality of archiving to data-intensive science has introduced new kinds of 
invisible labor in the form of authoring metadata and preparing datasets for long-term access. 
More cogently, archiving has brought conflicts between the norms of scientific practice and the 
norms of archiving practice as the standardization and consistency required of archival quality 
datasets is often at odds with the improvised and partial datasets common to the everyday work 
of science.  
 
 
Collaborating 
In data-intensive science, data, storage, and computing power take pride of place. But human 
relationships, mediated through data, storage, and computing power, produce scientific 
knowledge. And unlike computers, the human relationships that hold transdisciplinary research 
together require constant care and attention. Much like administering, the work of collaborating 
is not specific to data-intensive science. Collaboration has always been integral to scientific 
practice. Yet, the geographic dispersion of scientific collaborators, which is enabled and mediated 
by digital/computational methods and often formed by assembling or sharing common data sets, 
and the intense pressure towards interdisciplinary work have brought their own challenges to 
collaboration.  

In this context we refer to emotional labor (Hochschild 2012) and relationship building as 
collaborating. Collaborating is an active verb, expressing action as well as attitude and ethical 
orientation. As Jackson (2017) has argued, the work of caring and cultivating an ethic of care has 
both symbolic and material dimensions and can be directed towards human relationships or 
relationships to materials and equipment that mediate between human relationships.  

Administrators often do the emotional labor of counseling and mentoring students: One 
participant described an administrator who took on the emotional spadework required to make 
good on claims of furthering diversity and career formation:  

 
One of the things that I think was dramatically underappreciated by the management at 
large is the critical role that [the administrator] has played as a big brother, as a mentor 
towards lots and lots of students. And every program needs someone like him, whoever 
the official role is. As a person, he has been critical to the success of the center…. one of 
the remarkable sociological things about the center was that, there was probably at one 
point that half of the full-time staff, whether we were administrative or technical or 
whatever, were gay. For this department, engineering and so on, that was, I think, a quiet 
watershed event…in a very behind-the-scenes way and out-of-working-hours way, was 
somebody that many of our male students, at least gravitated to, to just be able to deal 
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with that side of their lives. None of this ever was above the surface. There were never 
any gay bashing issues.... It was all very professional sort of a thing, but I think [he] has 
just had this incredible role. 
 
PIs often do the emotional work of holding research teams together: A common refrain in long-

term research teams is the PI who does the emotional spadework of making sure each member of 
the research team feels valued and appreciated. In an economic climate where many researchers 
and scientists work on short-term, grant-dependent contracts in precarious positions, the 
emotional work of making everyone feel valued is important to retaining key personnel. Here a 
research scientist on a short-term contract talks about of a PI who went out of her way to create 
the social conditions required for successful collaborations in data-intensive science: “One of 
things that I've appreciated about her is that more than any of the other faculty that I've worked 
at the School of Engineering, she has a degree of caring about people at a personal level that was 
very refreshing and rewarding.”  

Research scientists on temporary contracts often do the emotional work of bringing peers into 
conversation: One of our interviewees worked as a mediator, building trust and friendliness while 
avoiding “flame wars” between colleagues from the same discipline who nevertheless held 
divergent viewpoints on method, research, and analysis. Here the interviewee describes the 
difficulties of reshaping relationships built on competition into relationships built on cooperation:  
 

There were some really harsh emails, people didn't hold back on being critical of one 
another, and again, it just didn't help in terms of trying to build a cohesive team that was  
…we'd take people from two institutions, and we'd sit them next to each other in the same 
room, and it's like, “we're working together guys.” So it was really challenging…and even 
if at the end of the day they still didn't fully respect each other or there was still some 
mistrust, I think I was able to develop a sense of rapport and trust with people that they 
relied on me to make sure that, to bridge it. 

 
It is a truism that science is, and always has been, a collaborative endeavor reliant on the 

care of human relationships. But pressure, often from granting agencies, to collaborate more 
frequently and intensely across disciplinary boundaries has brought new complications. 
Collaborations centered on access to common data and data products can reveal sharp and 
surprising disciplinary differences and the precarious nature of scientific work threatens the 
continuity of scientific collaborations and careers. 
 
 
Conclusion  
Bush’s annus mirabilis of 1945 cemented a sea change in the political economy of science. From 
the extraordinary productivity of wartime physics and chemistry, Bush envisioned a radically 
changed model of scientific inquiry and practice––changes cemented into American science with 
the creation of the National Science Foundation. A generation after Bush’s annus mirabilis, 
Weinberg and Paisley observed that Bush’s assumptions about this transformation were overly 
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optimistic and failed to account for the vast archipelago of work and labor that propels and 
informs scientific practice.  

Similarly, the introduction of data-intensive science has been accompanied by optimistic 
assumptions about the efficacy of making data digital and the ease of transdisciplinary research. 
Like Bush’s vision of postwar science modeled after chemistry and physics, data-intensive 
science found strong affinities with a particular discipline, astronomy. Writing two decades from 
the dawn of data-intensive science, we, like Weinberg and Paisely, have examined and critiqued 
those assumptions. Our critique was grounded in an empirical analysis of the CKI’s fifteen-year 
data corpus of continuous research into data-intensive science and guided by engagements with 
recent labor literature and classic readings in Science Studies. Throughout, we have drawn 
ethnographic examples from the extensive data corpus accumulated by several cohorts of 
researchers at the CKI. Though extensive, the CKI corpus and this article can only be a start in 
understanding the varieties and valences of labor in data-intensive science. Many consequential 
forms of (in)visible labor in data-intensive science have gone unaddressed by this article: the 
authorial and social work of securing funding under the grant system, the work of maintaining 
and repairing building and facilities, the labor of building precision instruments digitally 
connected to research infrastructure, and the labor of information technologists who maintain 
and repair the screens where much of data-intensive science takes place. Each of these areas 
encompasses a vast panorama of (in)visible work and labor that fall outside the purview of our 
data corpus.  

The argument we have presented here assumes that a full and nuanced understanding of 
data-intensive science can only be obtained by starting with the in situ work and labor of 
scientific practice in all its manifold forms. We have begun but by no means exhausted this 
process. In particular, more research is required to understand how the process of seeking 
funding, and policy interventions, (such as open science and open data policies), bend and shape 
the contours of scientific practice and labor. As well, studies by CKI researchers have primarily 
concentrated on disciplines that have been early adopters of data-intensive techniques and 
practices. Yet today, techniques pioneered in those disciplines are spreading beyond the 
boundaries of the physical and biological sciences into the humanities, social sciences, and arts. 
Little is known about how the long-standing norms of work in those fields are being reconfigured 
as data-intensive techniques are introduced. More research taking the perspective of work and 
labor is needed to achieve a full and nuanced accounting of the changes brought where data-
intensive techniques have taken hold.  
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